Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Sea ice acts as both an indicator and an amplifier of climate change. High spatial resolution (HSR) imagery is an important data source in Arctic sea ice research for extracting sea ice physical parameters, and calibrating/validating climate models. HSR images are difficult to process and manage due to their large data volume, heterogeneous data sources, and complex spatiotemporal distributions. In this paper, an Arctic Cyberinfrastructure (ArcCI) module is developed that allows a reliable and efficient on-demand image batch processing on the web. For this module, available associated datasets are collected and presented through an open data portal. The ArcCI module offers an architecture based on cloud computing and big data components for HSR sea ice images, including functionalities of (1) data acquisition through File Transfer Protocol (FTP) transfer, front-end uploading, and physical transfer; (2) data storage based on Hadoop distributed file system and matured operational relational database; (3) distributed image processing including object-based image classification and parameter extraction of sea ice features; (4) 3D visualization of dynamic spatiotemporal distribution of extracted parameters with flexible statistical charts. Arctic researchers can search and find arctic sea ice HSR image and relevant metadata in the open data portal, obtain extracted ice parameters, and conduct visual analytics interactively. Users with large number of images can leverage the service to process their image in high performance manner on cloud, and manage, analyze results in one place. The ArcCI module will assist domain scientists on investigating polar sea ice, and can be easily transferred to other HSR image processing research projects.more » « less
-
Social media data have been used to improve geographic situation awareness in the past decade. Although they have free and openly availability advantages, only a small proportion is related to situation awareness, and reliability or trustworthiness is a challenge. A credibility framework is proposed for Twitter data in the context of disaster situation awareness. The framework is derived from crowdsourcing, which states that errors propagated in volunteered information decrease as the number of contributors increases. In the proposed framework, credibility is hierarchically assessed on two tweet levels. The framework was tested using Hurricane Harvey Twitter data, in which situation awareness related tweets were extracted using a set of predefined keywords including power, shelter, damage, casualty, and flood. For each tweet, text messages and associated URLs were integrated to enhance the information completeness. Events were identified by aggregating tweets based on their topics and spatiotemporal characteristics. Credibility for events was calculated and analyzed against the spatial, temporal, and social impacting scales. This framework has the potential to calculate the evolving credibility in real time, providing users insight on the most important and trustworthy events.more » « less
-
Planetary Defense (PD) has become a critical effort of protecting our home planet by discovering potentially hazardous objects (PHOs), simulating the potential impact, and mitigating the threats. Due to the lack of structured architecture and framework, pertinent information about detecting and mitigating near earth object (NEO) threats are still dispersed throughout numerous organizations. Scattered and unorganized information can have a significant impact at the time of crisis, resulting in inefficient processes, and decisions made on incomplete data. This PD Mitigation Gateway (pd.cloud.gmu.edu) is developed and embedded within a framework to integrate the dispersed, diverse information residing at different organizations across the world. The gateway offers a home to pertinent PD-related contents and knowledge produced by the NEO mitigation team and the community through (1) a state-of-the-art smart-search discovery engine based on PD knowledge base; (2) a document archiving and understanding mechanism for managing and utilizing the results produced by the PD science community; (3) an evolving PD knowledge base accumulated from existing literature, using natural language processing and machine learning; and (4) a 4D visualization tool that allows the viewers to analyze near-Earth approaches in a three-dimensional environment using dynamic, adjustable PHO parameters to mimic point-of-impact asteroid deflections via space vehicles and particle system simulations. Along with the benefit of accessing dispersed data from a single port, this framework is built to advance discovery, collaboration, innovation, and education across the PD field-of-study, and ultimately decision support.more » « less
An official website of the United States government
